CERES Instrument Cal/Val Report

Kory J. Priestley Robert Lee, Susan Thomas, Aiman Al-Hajjah, Robert Wilson, Pete Spence, Ed Kizer, Peter Szewczyk, Phil Hess, Joey Escuadra, Denise Cooper

> 26th CERES Science Team Meeting Williamsburg, VA May 14, 2002

02:54: May 04 Vandenbe

Aqua Mission Status

05/ 04	Launch
	CERES Instruments to SURVIVAL Mode
	CERES Instruments Deployed
05 / 07	CEA & CEF first power on; SAFE Mode
05 / 10	S/C demo Delta-V Yaw maneuver
	Activate X-Band com system
	SSR partitioning for Science Data
	Enable CERES 1553 science data transactions
	First dump of SSR with Science Data Partitioning
05 / 11	S/C Delta-V demo 30 sec burn
05 / 12	AMSU-A1, -A2 Power On & Functional Test
05 / 13	First Delta-V ascent burn
05 / 14	HSB power on & Functional Test
05 / 16	Begin CERES Activation and Functional Tests
05 / 21	Second Ascent burn
05 / 24	Third Ascent burn
05 / 27	Fourth Ascent burn
05 / 30	Fifth Ascent burn
06 / 08	Final Ascent burn; mission orbit
06/09	CERES covers open
07/10	Deep Space Pitch-over maneuver

Aqua Mission Status

Launch Configuration (CERES Stowed)

Mission Configuration (CERES Deployed)

Initial Aqua Science Data

Stow Mode Diagnostic Data

FM-3

FM-4

1 count ~.5 w/m²

Upcoming Instrument Activities

Crystal-Face experiment will occur during July CERES will provide coverage on a daily basis. Preferred platform is the Aqua S/C, Will depend on S/C performance over next 30 d CERES/TERRA will provide coverage.

Terra/Flight Model 1 Lifetime Radiometric Stability

Determined with the Internal Calibration Module

Aiman Al-hajjah, Susan Thoma

Terra/Flight Model 2 Lifetime Radiometric Stability

Determined with the Internal Calibration Module

Internal/Solar Calibrations Key Results

- Ground to Flight Calibration Stability
 - Determined with Internal Calibration Module
 - TOT: 0.20 and 0.12% for FM1 and FM2
 - WN: 0.48 and 1.3% for FM1 and FM2
 - SW: -0.16 and <0.1% for FM1 and FM2
 - On-Orbit Calibration Stability (%/year)
 - Internal Calibration Module
 - TOT: 0.20* and 0.26* %/yr for FM1 and FM2
 - WN: -0.05 and 0.07 %/yr for FM1 and FM2
 - SW: 0.04* and 0.03* %/yr for FM1 and FM2
 - * statistically significant
 - All internal calibrations have been executed in daytime portion of orbit
 - Solar Calibrations
 - Terra MAM's have continued to drift with time and results are suspect

(FM2 minus FM1)

Edition 1 Data Products

Clear Land

Clear Ocean

- All Sky

LW Daytime

LW Nighttime

Beta Angle Dependence

There exists a beta angle dependence for one of the two SW Channels.

Suspect FM-2 is the culprit, analysis not yet complete.

Dependence will NOT be removed in Edition 2 BDS Data Products.

(FM2 minus FM1)

Edition 1 Data Products

Increasing difference in Daytime LW is caused primarily by the SW portion of the FM-2 Total Channel

(FM2 minus FM1)

Edition 1 Data Products

Clear Snow

Clear Land

Clear Ocean

All Sky

WN Daytime

WN Nighttime

(FM2 minus FM1)

Edition1 Data Products

◆ March 2000 December 2001

LW Flux

Growth in ΔLW_{day} is correlated to S From 3-channel intercomparison w the changes are in FM-2.

SW Flux

Relative agreement is a function of Drift of ~0.4%/yr beginning in May

WN Radiance

FM1 WN radiance grows with SW Consistent with a SW leak at the 0.7 3-channel Intercomparison verifies Invariant with time

Tropical Mean Self Consistency

Tropical Ocean, All Sky

Edition 1 Data Products

2.5

2.0 1.5

1.0 0.5

0.0

FM-1

Apparent drift in the SW channel beginning April 2001.

FM-2

Significant drift in the portion of TOT chann

Direct Comparison / Tropical Mean Key Results

Direct Comparison

- Relative Differences
 - WN radiances: FM1 < FM2 by 1.0%, no relative drift
 - FM1 has a SW leak of ~0.1%
 - SW radiances: FM1 < FM2 by 0.33% (Globally)
 - Clear Ocean FM2 > FM1 by ~1.9%
 - Bright Clouds FM1 > FM2 by ~0.7%
 - Nighttime LW: FM1 > FM2 by 0.3%, no relative drift
 - Daytime LW: Relative Growth of FM2 Daytime LW measurements of ~1.0%/yr since launch

3-Channel Deep Convection Results

March - December 2000

Daytime LW Error = (Total $_{day}$ – SW $_{day}$) – (C_1 *WN $_{day}$ + C_2)

Where C₁ and C₂ are found by regressing the Unfiltered WN against the unfiltered Total channel at night.

Non-linearity in FM1 is due to SW leak in WN channel

Three Channel Inter-Comparison

Using Deep Convective Clouds

Edition 1 Data Products

SW portion of the FM2 Total channel, and the FM1 SW channel are changing with time.

3-Channel Intercomparison Key Results

- FM-1
 - Time varying inconsistency in FM-1 Total Channel (total change ~1.0%)
 - Structure in Daytime LW Error is due to WN channel SW leak
 - Direct Comparison suggests error is in the SW channel
- FM-2
 - Time varying inconsistency in FM-2 Total channel (total change ~2.7%)
 - Direct Comparison suggests error is in the SW portion of the Total Channel

rra Validation Effort / Executive Summa

March, 2000 - March, 2002

- Ground to Flight calibration stability is better than 0.3% for TOT and SW channels
 - WN channel calibrations shifted from ground to flight, FM-1 by 0.48%, FM-2 by 1.3%
 - FM-2 WN radiances > FM-1 WN radiances by ~0.9%
 - Insufficient settling time allowed during ground cal's (Possible FM-2 delamination)
 - FM-1 WN channel has apparent SW leak of ~0.1%
 - No measurable drift in WN channels over mission lifetime (I.e. <0.1%)
- SW channel radiance measurements consistent at the 0.3% level between FM-1 and FM-2 globally averaged (I.e. FM-2 > FM-1)
 - Apparent mix of bias and gain errors (possibly spectral in nature) yields scene dependence
 - Clear Ocean FM-2 > FM-1 by ~1.9%
 - Bright Clouds FM-1 > FM-2 by ~0.7%
 - Stability better than 0.12 and 0.08 % per year based on SWICS lamps
 - Direct Comparison and Tropical Mean studies suggest larger instabilities (0.5% level)
- FM-1 day and nighttime LW (I.e. total channel) radiances are stable to better than 0.25% over the first 24 months
- FM-2 daytime LW radiances demonstrate a slow increase of ~1%/year
- FM-2 nighttime radiances appear stable with no measurable drift
 - Physics not yet completely understood

Edition 2 BDS and ERBE-Like Products: Drift Removal Methodology

its are modeled as originating from either of 2 physical entities.....

Radiometric Gain Change

- ✓ Wavelength independent change in sensor responsivity
- ✓ Corrections implemented in Count Conversion algorithm (SS1)

Spectral Response Change

- ✓ Wavelength dependent change in sensor absorptivity
- ✓ Corrections implemented in Spectral Unfiltering algorithms (SS2)

Updated Radiometric Gains and Spectral Response Functions will be generated on a monthly basis and will be implemented on either a daily (Gains) or monthly (Spectral) interpolated basis.

Instrument Group has completed preliminary reprocessing runs which correct the drift in the FM-2 Total channel.

lition 2 BDS, IES, ES8 Processing Strate

Data product generation requires 2 steps

- (1) Process "Baseline-1" BDS and ES8 using baseline radiometric gains spectral correction coefficients (SCC's)
 - Production strategy "Baseline-1", not available to public
 - Generates BDS, ES8 (no IES) to perform monthly Validation Studies
- (2) Process "Edition 2" using updated radiometric gains (BDS) and Spec Correction Coefficients (ES8). Gains and SCC's derived monthly
 - Production strategy "Edition 2", available to public
 - Generates BDS, ES8, IES

Data reduction and off-line analyses using baseline data is required Edition 2 products delayed approx. 2 months

Goal is to remove > 80% of the instrument drifts without waiting for long term data sets for reprocessing

Edition 2 BDS Production Strategy

Implementing Radiometric Gain Updates

Edition 2 ES8 Production Strategy

Edition 2 BDS and ERBE-Like Products: Preliminary Results

trument Group has completed preliminary reprocessing runs which correct the drift in the FM-2 Total channel.

Radiometric Gain Change

✓ Modeled as a linear 0.6% increase in responsivity over the first 25 months of data collected.

Edition 2 BDS and ERBE-Like Products: Preliminary Results

trument Group has completed preliminary reprocessing runs which correct the drift in the FM-2 Total channel.

Spectral Response Change

✓ Modeled as a linear 2.0% increase in the spectral throughput of the SW portion of the FM-2 Total channel (I.e. 0.2 - 3.0 microns) over the first 25 months of data collected.

(FM2 minus FM1)

LW Daytime Flux

Mar-00 May-00 Aug-00 Nov-00 Feb-01 May-01 Aug-01 Nov-01 Feb-02

Prelim. Edition

(FM2 minus FM1)

LW Nighttime Flux

Edition 1

Prelim. Edition

Three Channel Inter-Comparison

Using Deep Convective Clouds

Edition 1

Prelim. Edition 2

Tropical Mean Self Consistency

Tropical Ocean, All Sky

Edition 1

Edition 2

Instrument Cal/Val Summary

\qua:

No significant anomalies from spacecraft or instruments

CERES will open contamination covers on ~June 9, and thus begin operational data collection

Deep Space Pitch-over maneuver scheduled for mid-July

Terra:

Deep Space Pitch-over maneuver not yet executed

Edition 2 BDS and ERBE-like products will be publicly available by the end of June.

Edition 2 will:

- Account for pre to post launch gain changes as measured by the Internal Calibra Modules.
- Reduce by a factor of 2 to 10 uncertainties in the TOA fluxes due to time varying radiometric gain or spectral response function changes.
 - For example, errors in FM-2 daytime LW for Deep Convective clouds will be reduced from ~12 W/m^2 to ~1 W/m^2

Edition 2 will not:

- Correct noise due to beta angle dependence
- Incorporate scan dependent offset measurements from Deep Space Pitch-over